

Karolinska Institutet

EMBNET COST.CHARME TRAINING SCHOOL "BIG DATA FOR LIFE SCIENCES"

Introduction to Machine Learning

Gioele La Manno

September18th Ultuna campus, Uppsala Sweden

My aim with this lecture

- Make you aware of the <u>main classes</u> of Machine learning (ML) algorithms
- Enable you to <u>use</u> them by understanding the general framework
- Recognize that common <u>biological questions</u> about data can be formulated and solved by using one or more of ML algorithms
- Stretch your mind to think multidimensional

Not covered:

- Mathematical formulation of each algorithm I will mention
- Comparative between different approaches
- I will not talk about Bayesian models, HMM or neural networks

Introduction to machine learning

- High dimensionality
- Unsupervised methods
- Regression
- Classification
- Cross-validation and model selection

What is Machine learning?

6 The field of machine learning is concerned with the question of how to construct computer <u>programs</u> that automatically <u>improve with experience</u>.

Tom Mitchel

In other words:

Machine Learning studies <u>models</u> that can <u>learn</u> to make predictions <u>from data</u> instead of using static instructions

What is Machine learning?

In a programmatic way:

trained_model <- model(data, known_quantity)
predicted_quantity <- trained_model(new_data)</pre>

Supervised or Unsupervised?

Supervised learning

Training your machine to learn a <u>function</u> by showing couples of <u>input</u> and corresponding <u>output</u> (target) → Classification and Regression

Unsupervised learning

Training your machine to learn <u>structure</u> or <u>relationships</u> by presenting to it a set of <u>inputs</u> → Clustering and Dimensionality reduction

Classes of machine learning problems

A data analysis pipeline

A little bit of demystification

Often machine learning models are a <u>generalization</u> of well known models you use every day.

Missing data prediction

Dimensionality of the data Trivial cases

Example:

Typical assay

Point:

1 dimension

Dimensionality of the data **Trivial cases**

Typical assay FACS 2 markers

Point:

1 dimension 2 dimensions

Dimensionality of the data Trivial cases

Dimensionality of the data

Trivial cases

Dimensionality of the data Less Trivial cases

Example:

Mass spec trace Range (340-440m/z) resolution (2m/z) Electrophysiological Recording 2sec @ 200Hz

Activity (V) Time(s) Micrograph 128x128 pixels

Dimensionality of the data Less Trivial cases

Example:

Mass spec trace Range (340-440m/z) resolution (2m/z) Electrophysiological Recording 2sec @ 200Hz

Micrograph 128x128 pixels

50 dimensions

400 dimensions

16384 dimensions

The curse of dimensionality

Space is emptier / points are distant

Not only this.... Also weird things start to happen

Principal component analysis: a rotation in multidimensional space

Dimensionality reduction Conveyor belt

Images 128 * 128 pixels

(16K dimensions)

Linear mapping allows returning to the original space

Principal Components projection of the digits (time 0.01s)

Clustering

Definition?

Clustering

Cluster analysis is the task of <u>partitioning</u> the dataset into <u>subsets</u>, so that: the points in each subset are <u>more similar</u> <u>to each other</u> than those from different subsets

We need to define a distance metric:

Euclidean (L2 norm)
$$\sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2} = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$$

Manhattan (L1 norm) $\sum_{i=1}^n |p_i - q_i|$
Minkowski $(\sum_{i=1}^n |p_i - q_i|^c)^{1/c}$
Jaccard NNotEQ / NNotZero

Clustering

Clustering algorithms are particularly important when:

- You are in high dimensions
- Groups are difficult to visualize even in low dimensions
- You are in need of a statistical justification for grouping
- You need to automate things

Rule of thumb if none of the above: Do it by hand!

K Means Clustering

х

Algorithm

- Choose k centroids randomly.
- Calculate the distance from each point in the dataset to be classified to each centroid.
- Assign each point to the nearest centroid.
- Calculate the centroids of the resulting clusters.
- Repeat until the centroids don't move too much.

Affinity propagation

An algorithm where you do not set the number clusters Message passing algorithm: Every point is a candidate to become an "exemplar" "preference", "responsibility" and "availability"

Questions about Dimensionality or clustering?

Regression is the problem of predicting a target value from an arbitrary input.

We are looking for a function that returns real values.

y = f(x)

This is a number (not a category)

Regression and curve fitting

This is basically **fitting** a function.

With the complication that we don't know the function.

Regression and curve fitting

The situation would be different if we have some physical insight on the kind of function

 $f(x) = ax + bx^3 + sin(cx) + d^*cos(ex)$

Reduction of the problem to finding the values of the parameters

Regression and curve fitting

Optimization procedure are guaranteed to find the best values of the paramenters

$$f(x) = ax + bx^{3} + \sin(cx) + d^{*}\cos(ex)$$
$$\hat{f}(x) = 0.5^{*}x + 0.01^{*}x^{**3} + \sin(1.8^{*}x) + 0.3^{*}\cos(0.2^{*}x)$$

Minimize the sum of squares with respect to a,b,c,d,e

$$\frac{1}{N} \sum_{n=1}^{N} (\hat{f}(x_n) - y_n)^2$$

$$y = W_1^* X_1 + W_2^* X_2 + \dots + W_n^* X_n$$

Minimize the RSS

$$\min_{w} ||Xw - y||_2^2$$

Linear regression

Nearest Neighbours regression

Error of the model

Error that prevent supervised learning algorithms from generalizing beyond their training set:

Bias is error from erroneous assumptions in the learning algorithm. High bias -> miss the relevant relations

Variance is error from sensitivity to small fluctuations in the training set. High variance -> modeling the random noise in the training data

Bias-Variance decomposition

$$\mathrm{E} \Big[ig(y - \hat{f} \left(x
ight) ig)^2 \Big] = \mathrm{Bias} ig[\hat{f} \left(x
ight) ig]^2 + \mathrm{Var} ig[\hat{f} \left(x
ight) ig] + \sigma^2$$

Where:

$$\mathrm{Bias}ig[\hat{f}\left(x
ight)ig] = \mathrm{E}ig[\hat{f}\left(x
ight) - f(x)ig]$$

and

$$\mathrm{Var}ig[\hat{f}\left(x
ight)ig] = \mathrm{E}[\hat{f}\left(x
ight)^2] - \mathrm{E}[\hat{f}\left(x
ight)]^2$$

The expectation ranges over different choices of the training set: x1,x2,x3,...,xn and y1,y2,y3,...,yn All sampled from the same joint distribution

Regularized regression

Ridge regression

$$RSS + \lambda \sum_{i=1}^{d} w_i^2$$

Lasso regression

 $RSS + \lambda \sum_{i=1}^{d} |w_i|$ *i*=1

Not only about predictions but also coefficients

Most often models are not a black box.

- Feature selection
- Insight on the data

$$y = W_1^* X_1 + W_2^* X_2 + W_3^* X_3 + W_4^* X_4 + W_5^* X_5$$

Weighs 2.4 0.4 -1.7 0.1 0.9

Weighs 3.2 0 -2.1 0 0

Multidimensional and multitarget

original

Ridge

Kernel based methods For Regression

Kernel trick: Artificially increase the **Dimensions**

Include: Kernel Ridge Support Vector Regression **Gaussian Processes**

Identifying to which of a set of categories a new observation belongs on the basis of observations whose category membership is known (training set)

Linear classifier

Logistic Regression

Logistic regression, despite its name, is a linear model for classification rather than regression

Logistic regression in 1 dimension

Logistic Regression

Generalization to Multiple classes

Let's bring everything in high dimensions! Is it a stupid idea?

What do I do in this case?

Bring to higher dimensions Using nonlinear function of The original dimensions

Learn dividing plane in high dimensions

Corresponds to this non linear boundary

Support vector machines (classification)

In high dimensions everything is far from each other and therefore is easier that things Become linearly separable.

Different possible boundaries:

Support vector machines (classification)

In high dimensions everything is far from each other and therefore is easier that things Become linearly separable.

Different possible boundaries:

Support vector machines (classification)

In high dimensions everything is far from each other and therefore is easier that things Become linearly separable.

Different possible boundaries:

The points close to the margin are the one that dictate its position: "support vectors"

$$t_i(\vec{w}^T \cdot \phi(\vec{x}_i) + b) \ge 1$$

Linear kernel

Polynomial kernel

Gaussian kernel

Underfitting and Overfitting

Cross-validation

CV is a model validation technique for assessing how the results will generalize to an independent data set.

Cross-validation

It is both a way to evaluate and to select a model

reaularization=2.50 train-set score=0.838 CV score=0.809

regularization=0.01 train-set score=0.995 CV score=0.647

regularization=20.00 train-set score=0.824 CV score=0.795

regularization=0.05

CV score=0.699

train-set score=0.957

۰

regularization=200.00 train-set score=0.810 CV score=0.771

reaularization=0.50 train-set score=0.838 CV score=0.781

Learning more about learning

Code implementations available @ https://github.com/PRML/PRMLT

Springer Series in Statistics

Trevor Hastie Robert Tibshirani Jerome Friedman

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Second Edition

Deringer

Made available for FREE by the authors @: https://web.stanford.edu/~hastie/ElemStatLearn/