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Project	PetaGene
• Team	of	researchers:
– Dan	Greenfield
– Alban	Rrustemi
– Oliver	Stegle
(head	of	Stegle Lab)

• Private	and	governmental	grant	funding
• Collaboration	with	Stegle Group	at	EMBL-EBI
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What	we	do
• Lossless	Compression

– Robust,	high	performance	FASTQ.GZ	and	BAM	Compression
– Full	validation	and	MD5	matching	of	FASTQ,	FASTQ.GZ	and	BAM

• Transparent
– Access	compressed	files	in	their	native	format
– Access	as	BAM	or	FASTQ.GZ	at	exact	same	path	as	before	on	existing	storage

• Accelerated	transfers
– Including	streaming	compression	to/from	S3

• BayesCal (optional)
– Revolutionary	Bayesian	approach	to	NGS	quality	score	refinement	for	FASTQ	

and	BAM	files.



PetaSuite:	FasterQ
• Robust	100%	lossless	compression
• Significantly	better	compression	than	CRAM
• Transparent	access	as	FASTQ	/	FASTQ.gz
• High	speed	streaming	FASTQ	compression
• Streaming mode	can	be	used	to	accelerate	
FASTQ	file	transfers



PetaSuite:	FasterQ

• 3GB	compression	memory	footprint

• 1GB	decompression	memory	footprint

• 140MBytes/sec	compression	on	a	4-core	i7
– Compared	to	17MBytes/sec	with	GZIP



Outstanding	lossless	compression

0

1

2

3

4

5

6

FasterQ FasterQ	BayesCal

NovaSeq	FASTQ.GZ	Compresssion	Ratio

S1_L001

S2_L001

Even	better	
numbers	
coming	out	

soon

April	2017



PetaGene CRAM
Preserves	all	
data	fields

Revert to	
orig.	BAM	
(same	MD5)

Storage	
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reduction

Direct access	
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(for	tools)
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CRAM X	
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Quality	scores
• Example	Read:

• QS	is	the	estimated	probability	of	an	incorrectly	sequenced	
base

• For	Illumina	reads,	QS	takes	60-80%	of	CRAM	file
• Generic	compression	is	reaching	its	limits	and	these	limits	

are	not	good	enough!

Sequence	bases:
Quality	scores	(QS):

GCAGTATGCCTGGTGTATTTCAGAAACAACCA
@CCDFDEDFIHHDGGI@GI@FGH?<@A<I?>@
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PetaSuite:	BayesCal
• Bayesian	approach	to	yield	a	better	estimate	
of	sequencing	error	(i.e.	quality	score)	for	
each	base	in	a	read

• Calculate	posterior	probability	of	error	given	
model	and	prior	knowledge	(e.g.	from	a	
reference	genome)

• Leads	to	better	genotyping	accuracy



BayesCal =	refinement	of	quality	scores

• Sequencing	as	a	Bayesian	problem	of	noisy	codeword transmission
• Example	source:	k-mers from	a	reference	genome

2 Greenfield et al

sequence compression (Benoit et al., 2015; Cox et al., 2012; Grabowski
et al., 2015). Quality scores are more difficult to compress due to a larger
alphabet (63-94 in original form) and intrinsically have a higher entropy
(Yu et al., 2014). With lossless compression algorithms and entropy
encoders reaching their theoretical limits and delivering only moderate
compression ratios (Bonfield and Mahoney, 2013), there is a growing
interest to develop lossy compression schemes to improve compressibility
further. Quantising quality scores (i.e. reducing the alphabet size) is the
most basic approach to improve compressibility in a lossy manner.

One such approach of reducing all quality values to 8 levels
(bins) (Illumina, 2011) has become a widely used standard for the
Illumina platform and is enabled by default on the most recent machines
(Illumina, 2014). Another approach called P-Block (Cánovas et al., 2014)
involves local quantisation so that a representative quality score replaces
a contiguous set of quality scores that are within a fixed distance of
the representative score. Similarly the R-Block (Cánovas et al., 2014)
scheme replaces contiguous quality scores that are within a fixed relative
distance of a representative score. Other lossy approaches improve
compressibility and preserve higher fidelity by minimising a distortion
metric such as mean-squared-error or L1-based errors (Qualcomp and
QVZ) (Malysa et al., 2015; Ochoa et al., 2013). However, adoption
of lossy compression schemes for quality scores has been slow due to
concerns about adverse effects on downstream analyses, in particular
genotyping accuracy (Fritz et al., 2011). However, there are also reports
that compression schemes such as P-Block, R-Block, QVZ and Qualcomp
can, under some circumstances, lead to a slight improvement in genotyping
accuracy.

A number of more recent approaches utilise the sequence data itself
to guide the quality score compression. Quartz achieves this using a
reference corpus built from frequent 32-mers across reads from individuals
sequenced in the 1000 Genomes Project (Yu et al., 2014, 2015). Read
base pairs that match any one 32-mer in the corpus (up to one allowed
mismatch per 32-mer) have their quality score set to a fixed high value.
This ‘sparsification’ of quality scores reduces entropy, thus improving
quality score compressibility. A different approach, Leon, (Benoit et al.,
2015) utilises the dataset itself for building its set ofk-mers, and to generate
a reference probabilistic de Brujin Graph. In this case, bases in a read that
have enough highly frequent k-mers covering it within the dataset are set
to a fixed high value quality score. Both methods were reported to improve
genotyping accuracy.

In this paper we present GeneCodeq, a lossy compression scheme
that is inspired by coding theory (Barg, 1993; Ash, 1965) and Bayesian
inference. Uniquely, GeneCodeq uses a statistical approach to objectively
reason about the compressibility of quality scores. Briefly, our model
estimates the posterior probability of a sequencing error given the evidence
of the full read, including quality scores, together with information from a
reference corpus. As a result, the posterior estimates of most quality scores
are boosted above a saturation point of the Phred scheme, corresponding to
very high confidence. This approach results both in a significant reduction
in entropy and better genotyping accuracy when compared to existing
methods.

2 Methods
GeneCodeq uses a basic statistical model for mutations and sequencing
errors within the Bayesian framework. These processes are not modelled
in full detail. Instead, this simplified generative model lends itself to an
effective algorithm to estimate the probability of a sequencing error (See
Figure 1 for an overview). During sequencing, the sample genome is
fragmented and individual reads are randomly selected and sequenced.
If the set of all possible fragments was known a priori, these could be
regarded as codewords transmitted over a noisy channel (sequencing).
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Fig. 1. Illustration of our approach to model sequencing as a noisy transmission problem.
a) The source genome is observed. The source genome is uniformly randomly fragmented
into a set of k-mers. A k-mer (sequence read) is selected at random for transmission over
the noisy channel (the sequencer), resulting in an observed read and corresponding quality
scores. The posterior probability of a sequencing error can be estimated for each base, given
the read, quality scores and the set of possible source k-mers. b) The source genome is not
observed. The reference genome is used as a proxy for the sample genome, and split into a
set of all possible k-mers (a corpus). The noisy channel now introduces both mutation and
sequencing errors. The posterior probability of sequencing error can be calculated as in (a)
but also taking into account the probability of mutation in the noisy channel.

Given an observed sequence read, standard principles from coding theory
could be applied to infer the likelihoods for each codeword and thereby
accurately estimate the probability of sequencing error for each base.
In real sequencing, we do not have access to the set of true fragments.
Instead, GeneCodeq uses the reference genome as a source of possible read
fragments of a defined length k (source k-mers). The mismatch between
the reference and the true sample genome is then modelled as an additional
source of error in the transmission process. Importantly, this additional
error probability tends to be low as most reads can be well explained by
the reference corpus. Hence, a reference corpus is a suitable proxy for
the true sequence and again principles from coding theory can be used to
estimate the posterior probability of a sequencing error.

When applying this approach to NGS, we consider both the sequence
of the received read as well as the quality scores for each base. We use these
additional data as additional evidence for the likelihood of a sequencing
error. This estimate is then refined in the light of all the remaining evidence,
which includes the sequence context of the entire read and its quality scores
as well as the read k-mer corpus, which is derived from the reference.

Relationship to coding theory

The model that underlies GeneCodeq is related to coding theory. In the
general case of transmitting binary data over a noisy medium, forward
Error Correction (Ash, 1965) can be used to correct multiple bit errors. The
key idea is that outgoing data is encoded using an alphabet of carefully
constructed binary strings called codewords, ideally accounting for the
specifics of the noisy channel. When a particular codeword is transmitted,
the original transmitted codeword can be recovered with high probability,
even in the presence of bit errors. The key component to enable accurate
decoding is to define an alphabet of error tolerant codewords. For example,
if the Hamming distance is used to determine the likelihood that the signal
on the other end corresponds to one codeword versus another, it is desirable



BayesCal with	lossless	compression
• Works	on	FASTQ and	BAM
• Each	read	processed	completely	independently
• Leverages	all	the	quality	score	information	in	the	read
• Uses	a	corpus	(derived	from	ref	genome)	and	variants	(optional)
• Alignment	is	not	inferred	or	calculated
• Posterior	probability	calculated	across	distribution	of	all	possible	

source	k-mers in	corpus
• Needs	24GB	memory,	low	memory	version	forthcoming
• Runs	in	fraction	of	time	of	BQSR	or	most	pipeline	stages:		(20-

40MB/sec	on	4-core	i7)



Improved	quality	due	to	BayesCal (NA12878)



AUC	vs Compression	Ratio



F-Score	vs Compression	Ratio



Lossless	compression	ratios	
for	BayesCal-processed	files
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Comparison	of	PetaSuite usage	modes
Refined
QS?

Original
MD5?

HW	TCO
saving

X � 2:1	- 4:1

� X 4:1	– 6:1

� �
3.3:1	–
5:1

Lossless	
compression Decompression

BayesCal Lossless
compression Decompression

BayesCal Lossless
compression

Decompression	
&	merge

Keep	differences
on	cheaper	storage

FastQ.gz
BAM

FastQ.gz
BAM

Refined	Quality	Scores



Storage	savings from	PetaSuite

Original	FastQ.gz or	BAM	file	

Lossless compression
without QS	refinements

Lossless compression after
BayesCal QS	refinements

Tiered storage option
gives access to	both

Tier-1	disk	
and	SSD

Object,	
Tape,	etc..

Deltas

Hardware	cost	reduction

0%	(1:1)

~50-75%	(2:1	– 4:1)

~75-85%	(4:1	– 6:1)

~70-80%	(3.3:1	– 5:1)



PetaView demo





Award	winning	innovation

"The	judges	chose	a	new	product	that	could	give	you	
millions	of	dollars	worth	of	storage	savings	right	
now,	a	product	that	several	of	our	judges	wanted	to	
go	buy	immediately	after	lunch."	

Allison	Proffitt,	Editorial	Director	of	Bio-IT	World



Since	last	year
• Even	faster	and	better	compression

– Improvements	to	compression	algorithm
– Multithreaded	compression,	decompression,	validation,	and	random	access

• Exact	MD5	preservation
– Naïve	approaches	are	simple	but	getting	it	done	right	is	hard!

• Incredible	scalability
– On	top	of	existing	decompression	scaling,	added	support	for	distributed	compression	jobs

• Cloud	integration
– Stream	compress	S3->S3,	local->S3,	S3->local
– AWS	now,	Azure	and	Google	cloud	coming

• Autodetect species
– Instantly	autodetects species	for	optimal	compression
– Support	de-novo	aligned	genomes	(e.g.	plants)



Summary
• PetaSuite offers	powerful	tools	for:

– Increasing	effective	storage	capacity
– Accelerating	genomics	transfers	/	WAN	acceleration
– I/O	acceleration
– Improving	genotyping	accuracy
– Better	utilising tiered	storage

• Operates	transparently	with	existing	pipelines	and	storage	infrastructure
• We	make	money	by	saving	our	customers	money
• No	lock-in:	all	tools	for	accessing	&	decompressing	data	have	perpetual	

free	updates	for	customers



Bias	to	particular	reference?
• Negligible	effect	of	hs37d5	vs much	older	h16	as	
source	corpus	(hs37d5	used	for	alignment	in	both)

Reference corpus ROC AUC Precision Recall F-SCORE
Original (no QS refinement) 0.758493 0.873966 0.930355 0.901279

hs37d5 (ref only, no variants) 0.758961 0.874871 0.930250 0.901711

hg16 (ref only, no variants) 0.758570 0.874783 0.930262 0.901670

(Broad Institute recommended GATK pipeline, no-BQSR, NA12878J dataset at 30x, Illumina Platinum set (chr1))



Effect	on	rare	variants?
• Define	variants	not	in	dbSNP as	‘rare	variants’
• Negligible	effect	on	finding	true	rare	variants

Approach
True ‘rare’ SNP variants Δ true ‘rare’ SNP

variants found
new ‘rare’ SNP
variants foundfound (of 46920)

Original 8636 - -
BayesCal (hs37d5 reference,

no variants) 8648 12 (0.13% more) 12
BayesCal (1k Genome

h=16 variants) 8638 2 (0.02% more) 23
Illumina 8-bin 8564 -72 (0.83% less) 10



Bias	to	variants	in	corpus?
• 14.9	million	variants	in	h=16	corpus

• Negligible	effect	on	false	positives

Approach
False positives Δ false

positives
New false
positives(of 14.9 million in corpus)

Original 23136 - -

BayesCal (hs37d5 reference, 
no variants in corpus) 23171 35 (0.15% more) 45

BayesCal (1000 Genome 
h=16 variants in corpus) 23240 104 (0.45% more) 138

Illumina 8-bin 22980 -156 (0.67% less) 33
QVZ (3 clusters 0.6 bits/QS) 23272 136 (0.59% more) 666
(Broad Institute recommended GATK pipeline, no-BQSR, SRR622461 dataset at 5x, Illumina Platinum set)



What	about	sample	contamination?
• Highly	unlikely	to	be	modified	by	PetaGene BayesCal
• Process	E.	coli dataset	with	human corpus
• Only	0.0045%	of	reads	modified
• Of	these	reads,	e.g.	NCBI	BLAST	expectation	value	for	
best	E.	colimatch	is	7e-7	vs	4e-73	for	best	human	
match,	indicating	this	is	likely	due	to	contamination	of	
E.	coli sample	with	human	DNA.

• High	specificity	suggests	that	samples	are	very	unlikely	
to	be	modified	unless	related	to	corpus


